MORNING

0 6 DEC 2019

[Total No. of Questions: 9]

[Total No. of Pages: 2]

Uni. Roll No.

Program/ Course:B.Tech.(Sem-1/2) Name of Subject: Mathematics-II

Subject Code: BSC-104

Paper ID: 15940

Time Allowed: 03 Hours

Max. Marks: 60

NOTE:

1) Part - A & B are compulsory

2) Part- C has two Questions Q8 & Q9 and both are compulsory, but with internal choice.

3) Any missing data may be assumed appropriately.

Part - A

[Marks: 02 each]

Q1.

a) State Dirichlet's conditions for a function f(x) to be expressed as Fourier series.

- b) Find the points of inflexion of the curve $Y = x^3 + 8x^2 270x$.
- c) Find the equation of the tangent plane and normal line to the surface $\frac{x^2}{2} \frac{y^2}{3} = z$, at the point (2, 3, -1).
- d) Evaluate $\int_0^2 \int_1^2 \int_0^{yz} xyz \, dx \, dy \, dz$.
- e) If $r = |\vec{r}|$, where $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$, Prove that $\Delta(\log r) = \frac{\vec{r}}{r^2}$.
- f) Show that gradient field describing a motion is irrotational.

Part - B

[Marks: 04 each]

- Q2. Obtain the half range sine series for the function $f(x) = x^2$ in the interval $0 \le x \le 3$.
- Q3. Trace the curve $r = a(1 + \sin\theta)$ by discussing its features.
- Q4. Evaluate the integral $\int_0^1 \int_{4y}^4 e^{x^2} dx dy$ by Changing the order of integration.

PTO

MORNING

N 6 DEC 2019

- If z is a function of x and y and u, v be two other variables such that u = lx + my, v = ly - mx, show that $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = (l^2 + m^2)(\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v^2})$. Q5.
- Find the smaller of the areas bounded by the ellipse $4x^2 + 9y^2 = 36$ and the straight line 2x + 3y = 6.
- Q7. If $u \overrightarrow{F} = \Delta v$, where u, v are scalars fields and \overrightarrow{F} is a vector field, show that \overrightarrow{F} curl $\overrightarrow{F} = 0$.

Part - C

[Marks: 12 each]

(a) Verify Green's theorem for $\oint_c (x^2 - \cosh y) dx + (y + \sin x) dy$, where c is the boundary of a rectangle whose vertices are O(0,0), $A(\pi,0)$, $B(\pi,1)$, C(0,1). Q8

- (b) Verify Divergence theorem for $\overrightarrow{F} = (x^2 yz)\hat{\imath} + (y^2 zx)\hat{\jmath} + (z^2 xy)\hat{k}$ taken over the rectagular parallelopiped $0 \le x \le a$, $0 \le y \le b$, $0 \le z \le c$. Q8
- Q9. (a) Expand $f(x) = x \sin x$; $0 < x < 2\pi$ as a Fourier Series.

Q9. (b) Use Lagrange's method to find the shortest distance between the line y = 10 - 2xand the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$