MORNING

0 3 DEC 2019

[Total No. of Questions:09] Uni. Roll No.

[Total No. of Pages: 02]

Program: B.Tech. (Batch 2018 onwards)

Semester: 1/2

Name of Subject: Chemistry

Subject Code: BSC-105

Paper ID: 15933

Time Allowed: 3 Hours

Max. Marks: 60

NOTE:

1) Parts A and B are compulsory

- 2) Part-C has two Questions Q8 and Q9. Both are compulsory, but with internal choice
- 3) Any missing data may be assumed appropriately

Part - A

[Marks: 02 each]

Q1.

- a) What is the main difference between an open, closed and isolated system?
- b) Differentiate between *n*-type semiconductors and *p*-type semiconductors?
- c) Why gases can be liquefied by cooling?
- d) Define reverse osmosis?
- e) What is meso compound? Give one example.
- f) The molar extinction coefficient of phenanthrolein complex of iron (II) is $12000 \ dm^3 mol^{-1} cm^{-1}$ and the minimum detectable absorbance is 0.01. Calculate the minimum concentration of complex that can be detected in a Lambert-Beer law cell of path length is $1.00 \ cm$.

Part - B

[Marks: 04 each]

- Q2. What is caustic embrittlement? How it can be prevented?
- Q3. Write the conformations of n-butane and discuss their relative stabilities.
- Q4. Draw well labelled phase diagram of water system. Discuss its salient features.
- Q5. How n-propyl chloride can be distinguished from isopropyl chloride using NMR spectroscopy?

MORNING

0 3 DEC 2019

- Q6. With the help of diagram show crystal field splitting in octahedral complexes. Also calculate the CFSE for d^5 and d^8 , tetrahedral complexes.
- Q7. Derive Vander Waal's equation of state for real gas including volume-pressure correction.

Part - Catalog and Jacque to Small [Marks: 12 each]

- Q8(a). (i) Define IR spectroscopy. Discuss various molecular vibrations in this technique.
 - (ii) What are ion-exchange resins? Describe in details the ion-exchange process for demineralization of water.
 - (iii) Why do transition elements form coloured compounds? Explain.

OR

- Q8(b). (i) Calculate the amount of lime (84% pure) and soda (92% pure) required for treatment of 20,000 litres of water, whose impurities (in ppm) are: $Ca(HCO_3)_2 = 40.5$, $Mg(HCO_3)_2 = 36.5$, $MgSO_4 = 30.0$, $CaSO_4 = 34.0$, $CaCl_2 = 27.8$ and NaCl = 10.0.
 - (ii) What is an auxochrome? How its presence influence chromophore?
 - (iii) What are zeolites? How do they function in softening of water? What are their merits and demerits?
- Q9(a). (i) What is Markownikoff's rule? Give an example and discuss its mechanism.
 - (ii) Write a short note on London forces. What are the factors which affecting strength of these forces?
 - (iii) Consider a cell composed of the following half cells at 298 K:
 - (a) $Mg(s) | Mg^{2+}(aq);$
- (b) $Ag(s) \mid Ag^+(aq)$

The e.m. f. of cell is 2.96 V at $[Mg^{2+}] = 0.130 M$ and $[Ag^{+}] = 1 \times 10^{-4} M$. Calculate the standard e.m. f. of cell.

OR

- Q9(b). (i) Draw and explain the phase diagram of KI-H₂O system.
 - (ii) The K_{sp} value of two sparingly soluble salts $Ni(OH)_2$ and AgCl are 2.0×10^{-15} and 6.0×10^{-17} respectively. Which salt is more stable?
 - (iii) Differentiate between Diasteromers and Enantiomers
