Overview - Laser

1. Define Laser - coherent source of light

2. Characteristic properties of laser light - monochromatic, unidirectional, highly intense and coherent

3. Full form of laser

4. What is coherence - its two types - temporal n spatial (define and give significance)

5. Define - population inversion, lifetime of an energy state, metastable state

6. Principle of laser - Stimulated emission - emission which requires external help - happens before the lapse of lifetime of energy state

7. Spontaneous emission - happens by itself after the lapse of lifetime of energy state

8. Discuss Einstein theory of matter and radiations - relationship amongst various Einstein coefficients - define Einstein Coefficients, give their physical significance and their units.

9. Give conditions of lasing action

10. Components of laser - (i) Laser medium (should be able to achieve population inversion, can be solid, liquid, gas) (ii) Pump (device to supply energy to create poulation inversion) - its types (optical, electric discharge, electric, chemical) (iii) Optical Resonator (composition - two plane parallel mirrors with common principal axis, one fully polished and other is partially polished ; working - makes the photons oscillate between two mirrors and number of photons grows, positive feedback device)

11. 3-level laser : Ground state and Lower lasing level coincide with each other; normal excited state and upper lasing level (metastable state) separately defined eg Rub laser 12. 4-level laser : All the four levels, ground state, lower lasing level, upper lasing level and normal excited state separately defined. Continuous Output. eg He-Ne, CO₂

13. Explain Construction of He-Ne laser and CO₂ laser.

14. Explain working using energy level diagram of He-Ne laser and CO₂ laser.

15. Why He and Ne are mixed together?

16. How He-Ne laser is better than Ruby laser?

17. Why CO₂ and N₂ are mixed together?

18. Why He is added in the mixture of CO_2 and N_2 in CO_2 laser?

19. Construction and working (energy level diagram) of diode laser.

20. Applications of He-Ne laser

21. Applications of CO₂ laser

22. Applications of diode laser

23. Applications of lasers in general

24. Holography - based on interference (records both intensity and phase) - two step process - recording (interference) and reconstruction(diffraction)

25. Applications of holography

26. How holography is different from photography?

27. Brief idea of Q switching

28. Disadvantages of lasers