Overview - Fiber Optics

1. What is optical Fiber

2. How optical fiber is better than coaxial copper cable (i.e. advantages of using optical fibers) - more data carrying capacity (band width, band width is proportional to frequency of carrier wave), more security, least electromagnetic interference (EMI).

3. Principle of working - Total Internal Reflection

4. Explain Total Internal Reflection

5. Composition/structure of optical fiber (discuss three layers core, clad and protective sheath alongwith materials i.e. glass or plastic)

6. How light propagates through fiber - Explain qualtitatively and show with the help of diagram.

7. Define acceptance angle, acceptance cone and numerical aperture. Find their mathematical expression/relation. Give physical significance of each.

8. What is Δ - fractional change in refractive index and express numerical aperture in terms of $\Delta.$

9. What is mode?

10. Classification of optical fibers :

(i) Based on Index Profile of core -Step Index (SI) and Graded Index (GRIN). Also plot respective index profiles.

(ii) Based on number of modes - Single Mode Fiber (SMF) and Multimode Fiber (MMF)

11. What is V-no of fiber - $V = \frac{2 \pi a N.A.}{\lambda}$, where a is core radius, λ is wavelength of

carrier wave, N.A. is numerical aperture of fiber. Cut off value of V is 2.405, if V<2.405, fiber is SMF and if V>2.405, fiber is MMF. Note that V-no of fiber is also known as Normalized frequency.

12. Various losses through fiber - absorption, scattering, material, bending, coupling loss etc.

13. Attenuation coefficient $\alpha = \frac{10}{L} \log_{10} \frac{P_{in}}{P_{out}}$, where L is length of fiber in km, P_{in} is input

power launched into fiber and P_{out} is output power from the fiber. Units of α are dB/km. 14. What is pulse dispersion - broadening/spreading of pulse in time domain - leads to overlapping of various pulses - data distorted - limits the speed of data transfer. Units of pulse dispersion are ns/km.

15. Types of pulse dispersion - Intermodal (due to various modes, present in MMF), Intramodal (no source of light is truly monochromatic, equivalent to dispersion happening in prism, present in SMF), Waveguide dispersion (dure to core n clad of fiber).

16. Joints in optical fibers - (i) Splice - permanant joint to increase the length of fiber - two types : mechanical splice n fusion splice (ii) - Connector - semi-permanant/temporary joint to connect fiber with transmitter and/or receiver - can be of two types - mechanical (ferrule type) and extended beam connectors (iii) Coupler : device to split and/or combine optical signal from one port to many ports or many to one.

17. Applications of optical fibers - communication system, sensors.

18. Disadvantages of using optical fibers