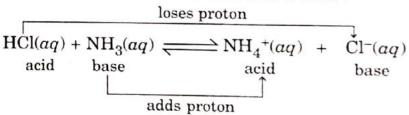

CHEMISTRY (BSC -105)

Acid-Base Concept

Q1: Discuss relative strengths of conjugate acids and bases.

 $\begin{array}{c} \text{CH}_3\text{COOH}(aq) + \text{H}_2\text{O}(l) & \longrightarrow & \text{CH}_3\text{COO}^-(aq) \\ \text{Weak acid} & & \text{Strong base} \\ & & + \text{H}_3\text{O}^+(aq) \end{array}$

Now, acetic acid is a weak acid and the equilibrium lies towards left. This also indicates that CH₃COO-ion has greater tendency to accept the proton and therefore, is a strong base.


Similarly, the strong base has a weak conjugate acid and a weak base has a strong conjugate acid. For example,

 $\begin{array}{cccc} \operatorname{CH_3COO^-}(aq) + \operatorname{H_3O^+}(aq) & & & & \operatorname{CH_3COOH}(aq) + \\ \operatorname{Strong base} & & & \operatorname{Weak acid} & \operatorname{H_2O}(l) \\ & & & & & & \operatorname{HCl}(aq) + \operatorname{H_2O}(l) \\ \operatorname{Weak base} & & & & \operatorname{Strong acid} \end{array}$

Q3: Select any one example to define Conjugate acid-base pair.

Conjugate Acid-Base Pairs

Consider a reaction of an acid and a base:

It is clear that HCl donates a proton (acts as an acid) and forms Cl⁻ ion which has a tendency to accept a proton (can act as a base). Similarly, NH₃ accepts a proton and acts as a base but it forms NH₄⁺ ion which has a tendency to behave as an acid. In other words, an acid donates a proton and becomes a base and a base accepts a proton and becomes an acid.

The base formed from an acid is referred to as the **conjugate base of the acid.** Similarly, the acid formed from a base is called the **conjugate acid of the base.** Thus, in the above example, Cl^- is the conjugate base of acid HCl and NH_4^+ is the conjugate acid of the base NH_3 .